Chemistry 30 - Equilibrium Unit QUEST

Name: Partner:

Use the following information to answer the next four questions.

Prairie Chem Inc. in Edmonton is a bulk manufacturer of concentrated bleach (NaOCl_(aq)). The bleach reacts with water to form a solution with a pH of 10.87.

$$OCl_{(aq)} + H_2O_{(l)} \Rightarrow HOCl_{(aq)} + OH_{(aq)}$$

1. In this reaction, the substances that act as Brønsted-Lowry acids are

A. $OCl_{(aq)}^{-}$ and $H_2O_{(1)}$

B. OCl_(aq) and HOCl_(aq)

C. $OCl_{(aq)}^{-}$ and $OH_{(aq)}^{-}$

D. H₂O_(l) and HOCl_(aq)

2. The substance in the equation above that may act as an amphiprotic species is

A. OCl⁻(aq)

B H₂O₍₁₎

C. HOCl_(aq)

D. OH (aq)

3. The two species in equimolar amounts that could act as a buffer in this bleach solution are

(A) OCl_(aq) and HOCl_(aq)

B. HOCl_(aq) and OH⁻_(aq)

C. $OCI_{(aq)}$ and $H_2O_{(1)}$

D. H₂O_(l) and OH_(aq)

4. In this bleach solution, the acid-base indicator

A. phenolphthalein would be colourless

B. alizarin yellow R would be orange

C. indigo carmine would be green

D. methyl orange would be red

Use the following information to answer the next question.

A source of hydrogen for the Haber process is "syngas", which is produced by a reaction of methane and water at 1 000°C.

nickel

 $CH_{4(g)} + H_2O_{(g)}$

catalyst

 $CO_{(g)} + 3 H_{2(g)}$

Numerical Response

If, at equilibrium, the $[CH_{4(g)}] = 2.97 \text{ mol/L}$, $[H_2O_{(g)}] = 7.94 \text{ mol/L}$, $[CO_{(g)}] = 5.45 \text{ mol/L}$, and $[H_{2(g)}] = 2.10 \text{ mol/L}$, then the K_{eq} is 2×14 .

(Record your three-digit answer in the numerical-response section on the answer sheet)

5. In the equation $HNO_{3(aq)} + N_2H_{4(aq)} \rightleftharpoons NO_{3(aq)} + N_2H_{5(aq)}$, one conjugate acid-base pair is

A. HNO_{3(aq)} and $N_2H_5^{+}$ (aq) $N_2H_{4(aq)}$ and $N_2H_5^{+}$ (aq)

B. HNO_{3(aq)} and $N_2H_{4(aq)}$

D. $N_2H_{4(aq)}$ and $NO_{3(aq)}$

Use the following information to answer the next question.

Some of the $SO_{2(g)}$ produced from the burning of coal and natural gas can react with $NO_{2(g)}$ in the atmosphere according to the equation

 $\mathrm{SO}_{2(g)} \ + \ \mathrm{NO}_{2(g)} \ \rightleftharpoons \ \mathrm{NO}_{(g)} \ + \ \mathrm{SO}_{3(g)}$

 $\Delta H = -41.9 \text{ kJ}$

6. The equilibrium concentration of $SO_{3(g)}$ in the reaction could be increased by

A. raising the temperature

B. adding a catalyst

C. removing $SO_{2(g)}$

adding NO_{2(g)}

			<i>t</i> >	
			·	

Use the following information to answer the next question.

Rainwater is acidic because it contains dissolved atmospheric $CO_{2(g)}$ that occurs naturally. It may also contain air pollutants, $NO_{x(g)}$, and $SO_{x(g)}$ from industrial sources.

10. Which of the following mixtures could act as a buffer solution?

A. $HF_{(aq)}$ and $H_2S_{(aq)}$

C. Na₂CO_{3(aq)} and NH_{3(aq)}

B. NaOH_(aq) and HCl_(aq)
NaH₂BO_{3(aq)} and Na₂HBO_{3(aq)}

			•	•
	•			
•				

When equally concentrated solutions of $HNO_{3(aq)}$, $CH_3COOH_{(aq)}$, $HOOCCOOH_{(aq)}$, and $Na_2S_{(aq)}$ were titrated with either a strong acid or strong base, the following curves were obtained.

Numerical Response

Match each of the graphs, as numbered above, with the corresponding titration species listed below.

 $HNO_{3(aq)}$ CH₃COOH_(aq) HOOCCOOH(aq) $Na_2S_{(aq)}$

(Record in the first column) (Record in the second column) (Record in the third column) (Record in the fourth column)

(Record your four-digit answer in the numerical-response section on the answer sheet)

Use the following information to answer the next question.

A 0.500 mol/L solution of hydrazine (N₂H_{4(aq)}) contains the following equilibrium concentrations.

> $[N_2H_{4(aq)}] = 0.498 \text{ mol/L}$ $[OH_{(aq)}^{-}] = 2.14 \times 10^{-3} \text{ mol/L}$ $[N_2H_5^{+}]_{(aq)} = 2.14 \times 10^{-3} \text{ mol/L}$

Numerical Response

The K_b for hydrazine, in scientific notation, is $a.bc \times 10^{-d}$. The values of a, b, c, and d are, respectively,

(Record your four-digit answer in the numerical-response section on the answer sheet)

11. The $[H_3O^+_{(aq)}]$ in 0.20 mol/L $HC_3H_5O_{3(aq)}$ is **A.** 2.8×10^{-3} mol/L

C. $2.6 \times 10^{-2} \text{ mol/L}$

(B) $5.3 \times 10^{-3} \text{ mol/L}$ (B) 2.28(C) 1.59

Use your recorded answer from Multiple choice 11 to answer Numerical Response 6*.

(Record your three-digit answer in the numerical-response section on the answer sheet)

^oYou can receive marks for this question even if the previous question was answered incorrectly.

- 12. A drop of thymol blue indicator in its blue form added to 10.0 mL of 0.10 mol/L H₂SO_{4(aq)} would become
 - A. yellow because the indicator would gain one proton
 - B. yellow because the indicator would lose one proton
 - (C) red because the indicator would gain two protons
 - **D.** red because the indicator would lose two protons

		•	
-			

· 13. Kelly tested portions of a solution with three indicators to determine the approximate pH.

Indicator	Colour
Bromocresol green	blue
Indigo carmine	blue
Thymophthalein	blue
. · ·	

The approximate pH of the solution is:

B. 9.0

- **D.** 11.6
- 14. A solution was tested and found to have a pOH of 3.2. This solution would most likely
 - A. be a proton donor

- **B.** react violently with zinc
- cause thymolphthalein to be blue
- **D.** cause bromocresol green to be yellow

Use the following information to answer the next question.

- 15. The most suitable indicator for the titration is
 - A. Phenolphthalein

B. methyl violet

C) chlorophenol red

- **D.** methyl orange
- 16. A glass of orange juice contains enough hydronium ions to kill you if your blood is not buffered to a pH of about 7.35. One of the several buffer systems that your blood contains is $H_2PO_4^{-1}(aq) - HPO_4^{-2}(aq)$. This system initially buffers the addition of hydronium ions from orange juice by the reaction

A.
$$H_3O^{+}_{(aq)} + H_2PO_{4}_{(aq)} \rightleftharpoons H_3PO_{4(aq)} + H_2O_{(l)}$$
B. $H_3O^{+}_{(aq)} + HPO_{4}^{2}_{(aq)} \rightleftharpoons H_2PO_{4}_{(aq)} + H_2O_{(l)}$
C. $2 H_3O^{+}_{(aq)} + PO_{4}^{3}_{(aq)} \rightleftharpoons H_2PO_{4}_{(aq)} + H_2O_{(l)}$
D. $2 H_3O^{+}_{(aq)} + 2 H_2PO_{4}_{(aq)} \rightleftharpoons PO_{4}^{3}_{(aq)} + 2 H_2O_{(l)}$

17. Phenol red in its acid form was placed in a solution of sodium hydroxide. Write a net ionic equation to show the likely reaction. HPr, Nator, OH Tax)

Equation:

HPr/09 + OH'/00) == HOOD+Pr-192)

			•